A novel sample and feature dependent ensemble approach for Parkinson’s disease detection

Author:

Ali Liaqat,Chakraborty ChinmayORCID,He Zhiquan,Cao Wenming,Imrana Yakubu,Rodrigues Joel J. P. C.

Abstract

AbstractParkinson’s disease (PD) is a neurological disease that has been reported to have affected most people worldwide. Recent research pointed out that about 90% of PD patients possess voice disorders. Motivated by this fact, many researchers proposed methods based on multiple types of speech data for PD prediction. However, these methods either face the problem of low rate of accuracy or lack generalization. To develop an approach that will be free of these issues, in this paper we propose a novel ensemble approach. These paper contributions are two folds. First, investigating feature selection integration with deep neural network (DNN) and validating its effectiveness by comparing its performance with conventional DNN and other similar integrated systems. Second, development of a novel ensemble model namely EOFSC (Ensemble model with Optimal Features and Sample Dependant Base Classifiers) that exploits the findings of recently published studies. Recent research pointed out that for different types of voice data, different optimal models are obtained which are sensitive to different types of samples and subsets of features. In this paper, we further consolidate the findings by utilizing the proposed integrated system and propose the development of EOFSC. For multiple types of vowel phonations, multiple base classifiers are obtained which are sensitive to different subsets of features. These features and sample-dependent base classifiers are integrated, and the proposed EOFSC model is constructed. To evaluate the final prediction of the EOFSC model, the majority voting methodology is adopted. Experimental results point out that feature selection integration with neural networks improves the performance of conventional neural networks. Additionally, feature selection integration with DNN outperforms feature selection integration with conventional machine learning models. Finally, the newly developed ensemble model is observed to improve PD detection accuracy by 6.5%.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3