Machine learning-based prediction of length of stay (LoS) in the neonatal intensive care unit using ensemble methods

Author:

Erdogan Yildirim AyseORCID,Canayaz MuratORCID

Abstract

AbstractNeonatal medical data holds critical information within the healthcare industry, and it is important to analyze this data effectively. Machine learning algorithms offer powerful tools for extracting meaningful insights from the medical data of neonates and improving treatment processes. Knowing the length of hospital stay in advance is very important for managing hospital resources, healthcare personnel, and costs. Thus, this study aims to estimate the length of stay for infants treated in the Neonatal Intensive Care Unit (NICU) using machine learning algorithms. Our study conducted a two-class prediction for long and short-term lengths of stay utilizing a unique dataset. Adopting a hybrid approach called Classifier Fusion-LoS, the study involved two stages. In the initial stage, various classifiers were employed including classical models such as Logistic Regression, ExtraTrees, Random Forest, KNN, Support Vector Classifier, as well as ensemble models like AdaBoost, GradientBoosting, XGBoost, and CatBoost. Random Forest yielded the highest validation accuracy at 0.94. In the subsequent stage, the Voting Classifier—an ensemble method—was applied, resulting in accuracy increasing to 0.96. Our method outperformed existing studies in terms of accuracy, including both neonatal-specific length of stay prediction studies and other general length of stay prediction research. While the length of stay estimation offers insights into the potential suitability of the incubators in the NICUs, which are not universally available in every city, for patient admission, it plays a pivotal role in delineating the treatment protocols of patients. Additionally, the research provides crucial information to the hospital management for planning such as beds, equipment, personnel, and costs.

Funder

Fırat University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3