Seismic data IO and sorting optimization in HPC through ANNs prediction based auto-tuning for ExSeisDat

Author:

Tipu Abdul Jabbar Saeed,Conbhuí Pádraig Ó,Howley Enda

Abstract

AbstractExSeisDat is designed using standard message passing interface (MPI) library for seismic data processing on high-performance super-computing clusters. These clusters are generally designed for efficient execution of complex tasks including large size IO. The IO performance degradation issues arise when multiple processes try accessing data from parallel networked storage. These complications are caused by restrictive protocols running by a parallel file system (PFS) controlling the disks and due to less advancement in storage hardware itself as well. This requires and leads to the tuning of specific configuration parameters to optimize the IO performance, commonly not considered by users focused on writing parallel application. Despite its consideration, the changes in configuration parameters are required from case to case. It adds up to further degradation in IO performance for a large SEG-Y format seismic data file scaling to petabytes. The SEG-Y IO and file sorting operations are the two of the main features of ExSeisDat. This research paper proposes technique to optimize these SEG-Y operations based on artificial neural networks (ANNs). The optimization involves auto-tuning of the related configuration parameters, using IO bandwidth prediction by the trained ANN models through machine learning (ML) process. Furthermore, we discuss the impact on prediction accuracy and statistical analysis of auto-tuning bandwidth results, by the variation in hidden layers nodes configuration of the ANNs. The results have shown the overall improvement in bandwidth performance up to 108.8% and 237.4% in the combined SEG-Y IO and file sorting operations test cases, respectively. Therefore, this paper has demonstrated the significant gain in SEG-Y seismic data bandwidth performance by auto-tuning the parameters settings on runtime by using an ML approach.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3