Abstract
AbstractFast automatic handgun detection can be very useful to avoid or mitigate risks in public spaces. Detectors based on deep learning methods have been proposed in the literature to trigger an alarm if a handgun is detected in the image. However, those detectors are solely based on the weapon appearance on the image. In this work, we propose to combine the detector with the individual’s pose information in order to improve overall performance. To this end, a model that integrates grayscale images from the output of the handgun detector and heatmap-like images that represent pose is proposed. The results show an improvement over the original handgun detector. The proposed network provides a maximum improvement of a 17.5% in AP of the proposed combinational model over the baseline handgun detector.
Funder
Ministerio de Economía y Competitividad
Junta de Comunidades de Castilla-La Mancha
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献