Using human pose information for handgun detection

Author:

Velasco-Mata Alberto,Ruiz-Santaquiteria Jesus,Vallez NoeliaORCID,Deniz Oscar

Abstract

AbstractFast automatic handgun detection can be very useful to avoid or mitigate risks in public spaces. Detectors based on deep learning methods have been proposed in the literature to trigger an alarm if a handgun is detected in the image. However, those detectors are solely based on the weapon appearance on the image. In this work, we propose to combine the detector with the individual’s pose information in order to improve overall performance. To this end, a model that integrates grayscale images from the output of the handgun detector and heatmap-like images that represent pose is proposed. The results show an improvement over the original handgun detector. The proposed network provides a maximum improvement of a 17.5% in AP of the proposed combinational model over the baseline handgun detector.

Funder

Ministerio de Economía y Competitividad

Junta de Comunidades de Castilla-La Mancha

Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved bounding box regression loss for weapon detection systems using deep learning;International Journal of Information Technology;2024-05-01

2. SPoTem: Handgun Detection in Videos using Spatial, Pose, and Temporal Features;2024 the 8th International Conference on Innovation in Artificial Intelligence;2024-03-16

3. Systematic review on weapon detection in surveillance footage through deep learning;Computer Science Review;2024-02

4. Firearm-related action recognition and object detection dataset for video surveillance systems;Data in Brief;2024-02

5. RZUD: A Novel Hybrid Model for Small Sized Handgun Detection;2024 18th International Conference on Ubiquitous Information Management and Communication (IMCOM);2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3