Bike sharing usage prediction with deep learning: a survey
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-022-07380-5.pdf
Reference94 articles.
1. Albuquerque V, Sales Dias M, Bacao F (2021) Machine learning approaches to bike-sharing systems: a systematic literature review. ISPRS Int J Geo Inf 10(2):62
2. Bai L, Yao L, Kanhere SS, et al (2019) Stg2seq: spatial-temporal graph to sequence model for multi-step passenger demand forecasting. In: Proceedings of the 28th international joint conference on artificial intelligence, AAAI Press, pp 1981–1987
3. Banet K, Naumov V, Kucharski R (2021) Using city-bike stopovers to reveal spatial patterns of urban attractiveness. Current Issues in Tourism pp 1–18
4. Beairsto J, Tian Y, Zheng L, et al (2021) Identifying locations for new bike-sharing stations in Glasgow: an analysis of spatial equity and demand factors. Annals of GIS pp 1–16
5. Billhardt H, Fernández A, Ossowski S (2021) Smart recommendations for renting bikes in bike-sharing systems. Appl Sci 11(20):9654
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Developing deep learning models for predicting urban bike-sharing usage patterns;Physica A: Statistical Mechanics and its Applications;2024-10
2. Analysis of Taxi Demand and Traffic Influencing Factors in Urban Core Area Based on Data Field Theory and GWR Model: A Case Study of Beijing;Sustainability;2024-08-27
3. Predicting cycling flows in cities without cycling data;Revista Eletrônica de Iniciação Científica em Computação;2024-06-28
4. Research on Shared Bicycle Prediction Using Gated Graph Convolutional Networks with Multi-Feature Edge Weights;2024-06-13
5. Characteristics and prediction of urban interaction networks from the perspective of traffic flow and text information flow;Environment and Planning B: Urban Analytics and City Science;2024-06-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3