A survey on wind power forecasting with machine learning approaches

Author:

Yang Yang,Lou Hao,Wu JinranORCID,Zhang Shaotong,Gao Shangce

Abstract

AbstractWind power forecasting techniques have been well developed over the last half-century. There has been a large number of research literature as well as review analyses. Over the past 5 decades, considerable advancements have been achieved in wind power forecasting. A large body of research literature has been produced, including review articles that have addressed various aspects of the subject. However, these reviews have predominantly utilized horizontal comparisons and have not conducted a comprehensive analysis of the research that has been undertaken. This survey aims to provide a systematic and analytical review of the technical progress made in wind power forecasting. To accomplish this goal, we conducted a knowledge map analysis of the wind power forecasting literature published in the Web of Science database over the last 2 decades. We examined the collaboration network and development context, analyzed publication volume, citation frequency, journal of publication, author, and institutional influence, and studied co-occurring and bursting keywords to reveal changing research hotspots. These hotspots aim to indicate the progress and challenges of current forecasting technologies, which is of great significance for promoting the development of forecasting technology. Based on our findings, we analyzed commonly used traditional machine learning and advanced deep learning methods in this field, such as  classical neural networks, and recent Transformers, and discussed emerging technologies like large language models. We also provide quantitative analysis of the advantages, disadvantages, forecasting accuracy, and computational costs of these methods. Finally, some open research questions and trends related to this topic were discussed, which can help improve the understanding of various power forecasting methods. This survey paper provides valuable insights for wind power engineers.

Funder

Australian Catholic University Limited

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3