Author:
Nguyen Dung,Nguyen Duc Thanh,Sridharan Sridha,Denman Simon,Nguyen Thanh Thi,Dean David,Fookes Clinton
Abstract
AbstractDeep learning has been widely adopted in automatic emotion recognition and has lead to significant progress in the field. However, due to insufficient training data, pre-trained models are limited in their generalisation ability, leading to poor performance on novel test sets. To mitigate this challenge, transfer learning performed by fine-tuning pr-etrained models on novel domains has been applied. However, the fine-tuned knowledge may overwrite and/or discard important knowledge learnt in pre-trained models. In this paper, we address this issue by proposing a PathNet-based meta-transfer learning method that is able to (i) transfer emotional knowledge learnt from one visual/audio emotion domain to another domain and (ii) transfer emotional knowledge learnt from multiple audio emotion domains to one another to improve overall emotion recognition accuracy. To show the robustness of our proposed method, extensive experiments on facial expression-based emotion recognition and speech emotion recognition are carried out on three bench-marking data sets: SAVEE, EMODB, and eNTERFACE. Experimental results show that our proposed method achieves superior performance compared with existing transfer learning methods.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献