Prediction of scour depth around bridge abutments using ensemble machine learning models

Author:

Marulasiddappa Sreedhara B.,Patil Amit Prakash,Kuntoji Geetha,Praveen K. M.,Naganna Sujay RaghavendraORCID

Abstract

AbstractAbutments are the structures that support the ends of a bridge deck. Scouring of streambed is a significant problem and ultimately results in the failure of the bridge when the abutments are exposed to flowing water over the long term. Abutment scour is influenced by the type of abutment, shape, and size of the abutments. In the current study, machine learning (ML) models have been utilized for predicting the scour depth around abutments making use of experimental data. The scour depth was modeled around three types of abutments: a vertical wall, a semicircular wall, and a 45° wing wall. Five input parameters, namely, the length of the abutment (L), breadth of the abutment (B), sediment size (d50), approaching flow depth (h) and average approaching flow velocity (U), were used in this study. For predicting the abutment scour depth, ML models such as Adaptive Neuro-Fuzzy Inference System (ANFIS), Gradient Tree Boosting (GTB), Group Method of Data Handling (GMDH), and Multivariate Adaptive Regression Splines (MARS) were applied. Statistical metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative RMSE (RRMSE), Normalized Nash–Sutcliffe Efficiency (NNSE), Kling-Gupta Efficiency (KGE), and Willmott Index (WI) have been employed to evaluate the performance of each model. It was found that the GTB model provided relatively accurate predictions of the scour depth around the semicircular and 45° wing wall abutments with good metrics. Similarly, the MARS model outperformed all other models in terms of predicting vertical wall abutment scour depth.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3