A differentially private indoor localization scheme with fusion of WiFi and bluetooth fingerprints in edge computing

Author:

Zhang XuejunORCID,He Fucun,Chen Qian,Jiang Xinlong,Bao Junda,Ren Tongwei,Du Xiaogang

Abstract

AbstractAs an enabling technology for edge computing scenarios, indoor localization has a broad prospect in a variety of location-based applications, such as tracking, navigating, and monitoring in indoor environments. In order to improve the location accuracy, numerous machine learning (ML)-based indoor localization schemes with fingerprint fusion have been proposed recently, which take advantage of the fusion of signal gathered from multiple wireless technologies (e.g., WiFi and BLE) and require a site survey to construct the fingerprint database. However, most solutions are based on cloud framework and thus pose a serious privacy leakage because users’ sensitive information (e.g., locations) is computed from the fingerprint database by the untrusted localization service provider. Furthermore, the site survey is time-consuming and labor-intensive. In this paper, we propose a differentially private fingerprint fusion semi-supervised extreme learning machine for indoor localization in the edge computing, called Adp-FSELM. The Adp-FSELM firstly employs a multi-level edge network-based privacy-preserving system framework to meet the requirements of ML-based fingerprint indoor localization for lightweight, low latency, and real-time response. Then, the Adp-FSELM extends the $$\varepsilon$$ ε -differential privacy to the fingerprint fusion semi-supervised extreme learning machine for indoor localization in edge computing through a three-phase private process consisting of private labeled sample obfuscation, differentially private feature fusion, and differentially private model training. Theoretical and comprehensive experimental results in real indoor environments demonstrate that the Adp-FSELM provides a high $$\varepsilon$$ ε -differential privacy guarantee for users’ location privacy while reducing human calibration effort and effectively resists Bayesian inference attacks. Compared with the existing semi-supervised learning-based localization methods, the mean absolute error of location accuracy of the Adp-FSELM is restricted to 2.22% at most, and the additional time consumption can be almost ignored. Thus, our mechanism can balance the trade-off among location privacy, location accuracy, and time consumption.

Funder

NSFC

Natural Science Foundation of Gansu Province

A Hundred Youth Talents Training Program of Lanzhou Jiaotong University.

Science and Technology Project of State Grid

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3