A systematic analysis using classification machine learning algorithms to understand why learners drop out of MOOCs
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-021-06122-3.pdf
Reference33 articles.
1. Allione G, Stein RM (2016) Mass attrition: an analysis of drop out from principles of microeconomics MOOC. J Econ Educ 47(2):174–186
2. Balakrishnan G, Coetzee D (2013) Predicting student retention in massive open online courses using hidden Markov models. Electr Eng Comput Sci Univ Calif Berkeley 53:57–58
3. Banerjee AV, Duflo E (2014) (Dis) organization and success in an economics MOOC. Am Econ Rev 104(5):514–518
4. Boyer S, Veeramachaneni K (2015) Transfer learning for predictive models in massive open online courses. In: International conference on artificial intelligence in education. Springer, Cham, pp 54–63
5. Cohen A, Baruth O (2017) Personality, learning, and satisfaction in fully online academic courses. Comput Hum Behav 72:1–12
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Model of Multiple Approaches to Learners' Success in MOOCs: A Scoping Literature Review;2024 IEEE Global Engineering Education Conference (EDUCON);2024-05-08
2. A review of machine learning methods used for educational data;Education and Information Technologies;2024-05-07
3. Academic support through tutoring, guided learning, and learning diaries in the context of the COVID-19 pandemic: an experimental model for master’s students;Frontiers in Education;2024-03-20
4. An English MOOC Answering System Based on Intelligent Algorithms;Lecture Notes on Data Engineering and Communications Technologies;2024
5. Design and research of MOOC teaching system based on TG-C4.5 algorithm;Systems and Soft Computing;2023-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3