A hybrid machine learning approach for hypertension risk prediction
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-021-06060-0.pdf
Reference30 articles.
1. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM (2016) Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 134(6):441–450
2. Liu L (2019) 2018 Chinese guidelines for the management of hypertension. Chin J Cardiovasc Med 24:24–56
3. Liu L (2011) Writing group of Chinese guidelines for the management of H: 2010 Chinese guidelines for the management of hypertension [Article in Chinese]. Zhonghua xin xue guan bing za zhi 39:579–615. https://doi.org/10.1038/cdd.2010.68
4. Chen ShuTang (1999) Prevention of hypertension [Article in Chinese]. China Healthcare & Nutrition 10:26–27. https://doi.org/CNKI:SUN:ZHBJ.0.1999-10-018
5. Boudabsa L, Filipovic D (2020) Machine learning with kernels for portfolio valuation and risk management, Papers, arXiv:1906.03726. https://EconPapers.repec.org/RePEc:arx:papers:1906.03726
Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. HRP-OG: Online Learning with Generative Feature Replay for Hypertension Risk Prediction in a Nonstationary Environment;Sensors;2024-08-03
2. A classifier based on mixed radial basis function network and combinatorial optimization model for medical diseases diagnosis;Journal of Ambient Intelligence and Humanized Computing;2024-08-03
3. Machine Learning in Healthcare Analytics: A State-of-the-Art Review;Archives of Computational Methods in Engineering;2024-04-04
4. Automatic identification of hypertension and assessment of its secondary effects using artificial intelligence: A systematic review (2013–2023);Computers in Biology and Medicine;2024-04
5. Prognostic risk models for incident hypertension: A PRISMA systematic review and meta-analysis;PLOS ONE;2024-03-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3