Using deep learning for short-term load forecasting
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
http://link.springer.com/content/pdf/10.1007/s00521-020-04856-0.pdf
Reference44 articles.
1. Zor K, Timur O, Teke A (2017) A state-of-the-art review of artificial intelligence techniques for short-term electric load forecasting. In: 2017 6th international youth conference on energy (IYCE). IEEE, pp 1–7
2. Dudek G (2016) Pattern-based local linear regression models for short-term load forecasting. Electr Power Syst Res 130:139–147
3. Verdejo H, Awerkin A, Becker C, Olguin G (2017) Statistic linear parametric techniques for residential electric energy demand forecasting. A review and an implementation to Chile. Renew Sustain Energy Rev 74:512–521
4. Yildiz B, Bilbao J, Sproul A (2017) A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renew Sustain Energy Rev 73:1104–1122
5. Sadaei H, Guimarães F, José da Silva C, Lee M, Eslami T (2017) Short-term load forecasting method based on fuzzy time series, seasonality and long memory process. Int J Approx Reason 83:196–217
Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. WITHDRAWN: Short-term Load Forecasting Method Based on LSTM Optimized by the Hybrid Dung Bettle Optimization Algorithm;Results in Engineering;2024-08
2. Multi-Horizon Short-Term Electrical Load Forecasting: A Comparative Analysis of Statistical Models and Deep Neural Networks;2024 IEEE International Symposium on Measurements & Networking (M&N);2024-07-02
3. LA-RCNN: Luong attention-recurrent- convolutional neural network for EV charging load prediction;Applied Intelligence;2024-03
4. Forecasting Electricity Consumption for Accurate Energy Management in Commercial Buildings With Deep Learning Models to Facilitate Demand Response Programs;Electric Power Components and Systems;2024-02-19
5. Data driven models on load forecasting: Case study Algeria;Data in Brief;2024-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3