1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viegas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) Tensorflow: large-scale machine learning on heterogeneous distributed systems. https://www.tensorflow.org/
2. Aitken R, Cannon EH, Pant M, Tahoori MB (2015) Resiliency challenges in sub-10nm technologies. In: IEEE 33rd VLSI Test Symposium (VTS), pp 1–4. https://doi.org/10.1109/VTS.2015.7116281
3. Azizimazreah A, Gu Y, Gu X, Chen L (2018) Tolerating soft errors in deep learning accelerators with reliable on-chip memory designs. In: IEEE international conference on networking, architecture and storage (NAS), pp 1–10. https://doi.org/10.1109/NAS.2018.8515692
4. Bach S, Binder A, Montavon G, Klauschen F, Müller KR, Samek W (2015) On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE. https://doi.org/10.1371/journal.pone.0130140
5. Baker B, Gupta O, Naik N, Raskar R (2017) Designing neural network architectures using reinforcement learning. In: International conference on learning representations (ICLR)