Adaptive temperature scaling for Robust calibration of deep neural networks

Author:

Balanya Sergio A.ORCID,Maroñas Juan,Ramos Daniel

Abstract

AbstractIn this paper, we study the post-hoc calibration of modern neural networks, a problem that has drawn a lot of attention in recent years. Despite the plethora of calibration methods proposed, there is no consensus yet on the inherent complexity of the task and, while some authors claim that simple functions solve the problem, others suggest that more expressive models are needed to capture misscalibration. As a first approach, we focus on the task of confidence scaling, specifically on post-hoc methods that generalize Temperature Scaling, which we refer to as the Adaptive Temperature Scaling family. We begin by demonstrating that while complex models like neural networks provide an advantage when there is ample data, they fail in scenarios where it is limited, notably common in fields like medical diagnosis. We then show how under this ideal data conditions the more expressive methods learn a relationship between the entropy of a prediction and its level of overconfidence, and based on this observation, we propose Entropy-based Temperature Scaling, a simple method that scales the confidence of a prediction according to this relationship. Results show that our method obtains state-of-the-art performance and is robust against data scarcity. Moreover, our proposed model enables a deeper understanding of the calibration process by the interpretation of the entropy as a measure of uncertainty in the network outputs.

Funder

Ministerio de Ciencia e Innovación

Universidad Autónoma de Madrid

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3