Machine learning ensemble with image processing for pest identification and classification in field crops
Author:
Funder
Department of Science and Technology, Ministry of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-020-05497-z.pdf
Reference52 articles.
1. Singh V, Misra AK (2017) Detection of plant leaf diseases using image segmentation and soft computing techniques. Inform Process Agric 4:41–49
2. Lopez JJ, Cobos M, Aguilera E (2011) Computer-based detection and classification of flaws in citrus fruits. Neural Comput Appl 20:975–981
3. Maharlooei M, Sivaraja S, Bajwa SG, Harmon JP, Nowatzki J (2017) Detection of soybean aphids in a greenhouse using an image processing technique. Comput Electron Agric 132:63–70
4. Xie C, Zhang J, Li R, Li J, Hong P, Xia J, Chen P (2015) Automatic classification for field crop insects via multiple-task sparse representation and multiple-kernel learning. Comput Electron Agric 119:123–132
5. Espinoza K, Valera DL, Torres JA, López A, Molina-Aiz FD (2016) Combination of image processing and artificial neural networks as a novel approach for the identification of Bemisia tabaci and Frankliniella occidentalis on sticky traps in greenhouse agriculture. Comput Electron Agric 127:495–505
Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An efficient zero-labeling segmentation approach for pest monitoring on smartphone-based images;European Journal of Agronomy;2024-10
2. Overview of Pest Detection and Recognition Algorithms;Electronics;2024-07-30
3. Using Data Augmentation to Improve the Generalization Capability of an Object Detector on Remote-Sensed Insect Trap Images;Sensors;2024-07-11
4. Enhanced Pest Recognition Using Multi-Task Deep Learning with the Discriminative Attention Multi-Network;Applied Sciences;2024-06-26
5. A survey on pest detection and classification in field crops using artificial intelligence techniques;International Journal of Intelligent Robotics and Applications;2024-05-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3