Web page recommendation via twofold clustering: considering user behavior and topic relation
Author:
Funder
The Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
http://link.springer.com/article/10.1007/s00521-016-2444-z/fulltext.html
Reference21 articles.
1. Li L, Wang D-D, Zhu S-Z, Li T (2011) Personalized news recommendation: a review and an experimental investigation. J Comput Sci Technol 26(5):754–766
2. Li L, Wang D, Li T et al (2011) Scene: a scalable two-stage personalized news recommendation system. In: Proceedings of the 34th annual international ACM SIGIR conference on research and development in information retrieval, pp 125–134. ACM. doi: 10.1145/2009916.2009937
3. Schafer JB, Konstan J, Riedi J (1999) Recommender systems in e-commerce. In: Proceedings of the 1st ACM conference on electronic commerce, pp 158–166. ACM
4. Billsus D, Pazzani MJ (1999) A personal news agent that talks, learns and explains. In: Proceedings of the third annual conference on autonomous agents, pp 268–275. ACM
5. Pazzani M, Billsus D (1997) Learning and revising user profiles: the identification of interesting web sites. Mach Learn 27(3):313–331
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Guest Editorial for the Special Issue “New Trends in Algorithms for Intelligent Recommendation Systems”;Algorithms;2024-06-10
2. A comprehensive investigation of clustering algorithms for User and Entity Behavior Analytics;Frontiers in Big Data;2024-05-09
3. KESMR: A Knowledge Enrichment Semantic Model For Recommending Microblogs;2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON);2023-12-01
4. I-DLMI: Web Image Recommendation Using Deep Learning and Machine Intelligence;Hybrid Intelligent Systems;2023
5. Deep auto‐encoder based clustering algorithm for graph‐based web page recommendation system;Concurrency and Computation: Practice and Experience;2022-11-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3