Machine learning-data mining integrated approach for premature ventricular contraction prediction
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-021-05820-2.pdf
Reference81 articles.
1. Mitra M, Samanta RK (2013) Cardiac arrhythmia classification using neural networks with selected features. ProcediaTechnol 10:76–84. https://doi.org/10.1016/j.protcy.2013.12.339
2. Haldar NAH, Khan FA, Ali A, Abbas H (2017) Arrhythmia classification using Mahalanobis distance based improved Fuzzy C-Means clustering for mobile health monitoring systems. Neurocomputing 220:221–235. https://doi.org/10.1016/j.neucom.2016.08.042
3. Iwasa A, Hwa M, Hassankhani A et al (2005) Abnormal heart rate turbulence predicts the initiation of ventricular arrhythmias. PACE - Pacing ClinElectrophysiol. https://doi.org/10.1111/j.1540-8159.2005.50186.x
4. Clifford GD, Azuaje F, McSharry PE (2006) Advanced methods and tools for ECG data analysis
5. Chambrin M-C, Ravaux P, Calvelo-Aros D, Jaborska A, Chopin C, Boniface B (1999) Multicentric study of monitoring alarms in the adult intensive care unit (ICU): a descriptive analysis. Intensive Care Med 25:1360–1366
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Automated diagnosis of premature ventricular contraction arrhythmia through electrocardiogram analysis and machine learning techniques;Multiscale and Multidisciplinary Modeling, Experiments and Design;2024-07-06
2. Heart patient health monitoring system using invasive and non-invasive measurement;Scientific Reports;2024-04-26
3. Identifying Premature Ventricular Complexes from Outflow Tracts Based on PVC Configuration: A Machine Learning Approach;Journal of Clinical Medicine;2023-08-26
4. Dense lead contrast for self-supervised representation learning of multilead electrocardiograms;Information Sciences;2023-07
5. A fully automatic model for premature ventricular heartbeat arrhythmia classification using the Internet of Medical Things;Biomedical Signal Processing and Control;2023-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3