A CNN-LSTM-based fault classifier and locator for underground cables
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-021-06153-w.pdf
Reference26 articles.
1. Livieris IE, Pintelas E, Pintelas P (2020) A CNN–LSTM model for gold price time-series forecasting. Neural Comput Appl. https://doi.org/10.1007/s00521-020-04867-x
2. Chen K, Hu J, He J (2016) Detection and classification of transmission line faults based on unsupervised feature learning and convolutional sparse autoencoder. IEEE Trans Smart Grid 9(3):1748–1758
3. Patel B, Bera P (2018) Detection of power swing and fault during power swing using Lissajous figure. IEEE trans power deliv 33(6):3019–3027
4. Mishra DP, Ray P (2018) Fault detection, location and classification of a transmission line. Neural Comput Appl 30(5):1377–1424
5. Pandey A, Younan NH (2010) Underground cable fault detection and identification via fourier analysis. In: International conference on high voltage engineering and application. IEEE, pp 618–621
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Comprehensive Review on the Role of Artificial Intelligence in Power System Stability, Control, and Protection: Insights and Future Directions;Applied Sciences;2024-07-17
2. Investigation on high-precision power cable fault localization model under strong noise environment;Proceedings of the 2024 3rd International Symposium on Control Engineering and Robotics;2024-05-24
3. A new adaptive feature fusion and selection network for intelligent transportation systems;Control Engineering Practice;2024-05
4. AI-Driven Electrostatic Modeling for Improved Electronic Reliability: Case of Electrical Substations of Kyrgyzstan;2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2024-02-29
5. Fault distance estimation for transmission lines with dynamic regressor selection;Neural Computing and Applications;2023-11-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3