Simulation of the behavior of fine and gross motor skills of an individual with motor disabilities

Author:

Sánchez-Torres Karla K.,Rodríguez-Romo SuemiORCID

Abstract

AbstractWe have developed a neural network model that imitates the central nervous system’s control of motor sensors (Sánchez-Torres and Rodríguez-Romo in Neurocomputing 581:127511, 2024). Our research explored various levels of connectivity in our neural network related to neuroplasticity in the central nervous system. We have conducted a study comparing healthy individuals to those with motor impairments by utilizing reinforcement learning and transfer entropy. In our previous research (Sánchez-Torres and Rodríguez-Romo in Neurocomputing 581:127511, 2024), we have simulated human walking while encountering obstacles as an instance of gross motor activities. Now, we have used the same model to simulate fine motor activities. Our goal is to identify differences in information transmission between gross and fine motor activities among healthy individuals and those with motor impairments by evaluating the effective connectivity of our network. To regulate learning accuracy in our model, we introduced a variable called numClusterToFire. However, we discovered that the value for this variable requires careful calibration. If the value is too small, agent exploration is insufficient, and network learning is inefficient. Conversely, learning times increase exponentially, often unnecessarily if the value is too large. We conducted simulations for gross and fine motor skills using three different numClusterToFire values and found that as we increased numClusterToFire, the time required for the network to memorize the outputs for each of the objects in the test set also increased. Our findings indicate that in gross motor skills, which do not require precision, changes in the numClusterToFire variable do not affect information transfer behavior. Conversely, in fine motor skills, information transfer decreases as numClusterToFire increases. On the other hand, our model revealed that for healthy and disabled individuals, the transfer of information between the input layer and the first hidden layer is higher for fine motor skills; this important biological fact suggests the influence of external cues in performing this activity successfully. Additionally, our neural network model showed that movements that do not require precision do not necessarily require a high level of neuroplasticity. Increasing neuroplasticity may cause some neurons to transmit more information than others. Whereas, increasing neuroplasticity through practice is essential for precise movements like fine motor skills. We also found that information transfer in the network’s hidden layers is similar for fine and gross motor activities, as we observed identical patterns. However, the distribution and proportion of these patterns differ, concluding that more neurons are involved in fine motor activities, and more information is transferred compared to gross motor activities. Finally, a pattern was observed in the transfer of information in the last hidden layer, which is only present in fine motor skills. This pattern is associated with the precision of the movements.

Funder

Consejo Nacional de Ciencia y Tecnología

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Universidad Nacional Autónoma de México

Publisher

Springer Science and Business Media LLC

Reference36 articles.

1. Levine A, Lewallen K, Pfaff S (2012) Spatial organization of cortical and spinal neurons controlling motor behavior. Curr Opin Neurobiol 22:812–821

2. Panigrahi B et al (2015) Dopamine is required for the neural representation and control of movement vigor. Cell 162:1418–1430

3. Hall J, Guyton A (2016) Tratado de fisiología médica, 13th edn. Elsevier, Amsterdam

4. Carlson N (2013) Physiology of behavior. Pearson, Boston

5. Romero F, Olivares A, Rivera A (2019) Neurofisiología: para estudiantes de medicina. Docencia Digital

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3