EmulART: Emulating radiative transfer—a pilot study on autoencoder-based dimensionality reduction for radiative transfer models

Author:

Rino-Silvestre JoãoORCID,González-Gaitán Santiago,Stalevski Marko,Smole Majda,Guilherme-Garcia Pedro,Carvalho Joao Paulo,Mourão Ana Maria

Abstract

AbstractDust is a major component of the interstellar medium. Through scattering, absorption and thermal re-emission, it can profoundly alter astrophysical observations. Models for dust composition and distribution are necessary to better understand and curb their impact on observations. A new approach for serial and computationally inexpensive production of such models is here presented. Traditionally these models are studied with the help of radiative transfer modelling, a critical tool to understand the impact of dust attenuation and reddening on the observed properties of galaxies and active galactic nuclei. Such simulations present, however, an approximately linear computational cost increase with the desired information resolution. Our new efficient model generator proposes a denoising variational autoencoder (or alternatively PCA), for spectral compression, combined with an approximate Bayesian method for spatial inference, to emulate high information radiative transfer models from low information models. For a simple spherical dust shell model with anisotropic illumination, our proposed approach successfully emulates the reference simulation starting from less than 1% of the information. Our emulations of the model at different viewing angles present median residuals below 15% across the spectral dimension and below 48% across spatial and spectral dimensions. EmulART infers estimates for $$\sim $$ 85% of information missing from the input, all within a total running time of around 20 minutes, estimated to be 6$$\times $$ × faster than the present target high information resolution simulations, and up to 50$$\times $$ × faster when applied to more complicated simulations.

Funder

Fundação para a Ciência e a Tecnologia

Science Fund of the Republic of Serbia

Ministry of Education, Science and Technological Development of the Republic of Serbia

Universidade de Lisboa

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3