Multi-level context-driven interaction modeling for human future trajectory prediction

Author:

He Zhiquan,Sun Hao,Cao Wenming,He Henry Z.

Abstract

AbstractHuman trajectory prediction is a challenging task with important applications such as intelligent surveillance and autonomous driving. We recognize that pedestrians in close and distant neighborhoods have different impacts on the person’s decision of future movements. Local scene context and global scene layout also affect the movement decision differently. Existing methods have not adequately addressed these interactions between humans and the multi-level contexts occurring at different spatial and temporal scales. To this end, we propose a multi-level context-driven interaction modeling (MCDIM) method for human future trajectory learning and prediction. Specifically, we construct a multilayer graph attention network (GAT) to model the hierarchical human–human interactions. An extra set of long short-term memory networks is designed to capture the correlations of these human–human interactions at different temporal scales. To model the human–scene interactions, we explicitly extract and encode the global scene layout features and local context features in the neighborhood of the person at each time step and capture the spatial–temporal information of the interactions between human and the local scene contexts. The human–human and human–scene interactions are incorporated into the multi-level GAT-based network for accurate prediction of future trajectories. We have evaluated the method on benchmark datasets: the walking pedestrians dataset provided by ETH Zurich (ETH) and the crowd data provided by the University of Cyprus. The results demonstrate that our MCDIM method outperforms existing methods, being able to generate more accurate and plausible trajectories for pedestrians. The average performance gain is 2 and 3 percentage points in terms of the average displacement error and final displacement error, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3