A feature selection method based on Shapley values robust for concept shift in regression

Author:

Sebastián CarlosORCID,González-Guillén Carlos E.ORCID

Abstract

AbstractFeature selection is one of the most relevant processes in any methodology for creating a statistical learning model. Usually, existing algorithms establish some criterion to select the most influential variables, discarding those that do not contribute to the model with any relevant information. This methodology makes sense in a static situation where the joint distribution of the data does not vary over time. However, when dealing with real data, it is common to encounter the problem of the dataset shift and, specifically, changes in the relationships between variables (concept shift). In this case, the influence of a variable cannot be the only indicator of its quality as a regressor of the model, since the relationship learned in the training phase may not correspond to the current situation. In tackling this problem, our approach establishes a direct relationship between the Shapley values and prediction errors, operating at a more local level to effectively detect the individual biases introduced by each variable. The proposed methodology is evaluated through various examples, including synthetic scenarios mimicking sudden and incremental shift situations, as well as two real-world cases characterized by concept shifts. Additionally, we perform three analyses of standard situations to assess the algorithm’s robustness in the absence of shifts. The results demonstrate that our proposed algorithm significantly outperforms state-of-the-art feature selection methods in concept shift scenarios, while matching the performance of existing methodologies in static situations.

Funder

Centro para el Desarrollo Tecnológico Industrial

Ministerio de Universidades

Universidad Politécnica de Madrid

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3