Detection and classification of photovoltaic module defects based on artificial intelligence

Author:

Shaban Warda M.

Abstract

AbstractPhotovoltaic (PV) system performance and reliability can be improved through the detection of defects in PV modules and the evaluation of their effects on system operation. In this paper, a novel system is proposed to detect and classify defects based on electroluminescence (EL) images. This system is called Fault Detection and Classification (FDC) and splits into four modules, which are (1) Image Preprocessing Module (IPM), (2) Feature Extraction Module (FEM), (3) Feature Selection Module (FSM), and (4) Classification Module (CM). In the first module (i.e., IPM), the EL images are preprocessed to enhance the quality of the images. Next, the two types of features in these images are extracted and fused together through FEM. Then, during FSM, the most important and informative features are extracted from these features using a new feature selection methodology, namely, Feature Selection-based Chaotic Map (FS-CM). FS-CM consists of two stages: filter stage using chi-square to initially select the most effective features and a modified selection stage using an enhanced version of Butterfly Optimization Algorithm (BOA). In fact, BOA is a popular swarm-based metaheuristic optimization algorithm that has only recently found success. While BOA has many benefits, it also has some drawbacks, including a smaller population and an increased likelihood of getting stuck in a local optimum. In this paper, a new methodology is proposed to improve the performance of BOA, called chaotic-based butterfly optimization algorithm. Finally, these selected features are used to feed the proposed classification model through CM. During CM, Hybrid Classification Model (HCM) is proposed. HCM consists of two stages, which are binary classification stage using Naïve Bayes (NB) and multi-class classification stage using enhanced multi-layer perceptron. According to the experimental results, the proposed system FDC outperforms the most recent methods. FDC introduced 98.2%, 89.23%, 87.2%, 87.9%, 87.55%, and 88.20% in terms of accuracy, precision, sensitivity, specificity, g-mean, and f-measure in the same order.

Funder

Nile Higher Institute for Engineering & Technology

Publisher

Springer Science and Business Media LLC

Reference51 articles.

1. Gielen D, Gorini R, Wagner N et al (2019) Global energy transformation: a roadmap to 2050,” international Renewable Energy Agency (IRENA), 2019

2. International Energy Agency: IEA. https://www.iea.org/, last access 16 July 2023

3. Nengroo S, Ali M, Zafar A et al (2019) An optimized methodology for a hybrid photo-voltaic and energy storage system connected to a low-voltage grid. Electronics, Multidisciplinary Digital Publishing Institute (MDPI) 8(2):1–12

4. Jaber M, Abd Hamid A, Sopian K et al (2022) Prediction model for the performance of different PV modules using artificial neural networks. Appl Sci 12:1–16. https://doi.org/10.3390/app12073349

5. Rana M, Uddin M, Sarkar M et al (2022) A review on hybrid photovoltaic—battery energy storage system: current status, challenges, and future directions. J Energy Storage 51:1–20. https://doi.org/10.1016/j.est.2022.104597

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3