Estimate remaining useful life for predictive railways maintenance based on LSTM autoencoder
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-021-06051-1.pdf
Reference24 articles.
1. Cachada A et al. Maintenance 4.0: Intelligent and Predictive Maintenance System Architecture. In: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, pp 139–146
2. Poór P, Basl J, Zenisek D (2019) Predictive Maintenance 4.0 as next evolution step in industrial maintenance development. In: 2019 International Research Conference on Smart Computing and Systems Engineering (SCSE), Colombo, Sri Lanka, pp 245–253.
3. Zahrah SF, Yusof YA, Kumar K, Sorooshian S (2014) Maintenance in the Era of Industry 4.0, Journal of Management and Science, 4(3), 2014
4. Li CH, Lau HK (2017) A critical review of product safety in industry 4.0 applications. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, pp 1661–1665
5. Baqqal Y, El hammoumi M (2018) State of the art in maintenance modelling and simulation approaches for maintenance systems. In: 2018 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD), Marrakech, Morocco, pp 214–218
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A critical review on system architecture, techniques, trends and challenges in intelligent predictive maintenance;Safety Science;2024-09
2. A new approach: ordinal predictive maintenance with ensemble binary decomposition (OPMEB);Turkish Journal of Electrical Engineering and Computer Sciences;2024-07-26
3. A Predictive Maintenance Strategy for a Single Device Based on Remaining Useful Life Prediction Information: A Case Study on Railway Gyroscope;IEEE Transactions on Instrumentation and Measurement;2024
4. Time consideration in machine learning models for train comfort prediction using LSTM networks;Engineering Applications of Artificial Intelligence;2023-08
5. LSTM-based failure prediction for railway rolling stock equipment;Expert Systems with Applications;2023-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3