Funder
Ministry of Science and ICT, South Korea
Fonds National de la Recherche Luxembourg
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. Zaheer MZ, Lee J-H, Astrid M, Lee S-I (2020) Old is gold: Redefining the adversarially learned one-class classifier training paradigm. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 14183–14193
2. Gong D, Liu L, Le V, Saha B, Mansour MR, Venkatesh S, Hengel Av.d.: (2019) Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE international conference on computer vision pp 1705–1714
3. Li S, Cheng Y, Tian Y, Liu Y (2022) Anomaly detection based on superpixels in videos. Neural Comput Appl 34(15):12617–12631
4. Astrid M, Zaheer MZ, Lee J-Y, Lee S-I (2021) Learning not to reconstruct anomalies. In: British machine vision conference
5. Sultani W, Chen C, Shah M (2018) Real-world anomaly detection in surveillance videos. In: Proceedings of the IEEE conference on computer vision and pattern recognition pp 6479–6488