Data portability for activities of daily living and fall detection in different environments using radar micro-doppler

Author:

Shah Syed Aziz,Tahir Ahsen,Le Kernec Julien,Zoha Ahmed,Fioranelli Francesco

Abstract

AbstractThe health status of an older or vulnerable person can be determined by looking into the additive effects of aging as well as any associated diseases. This status can lead the person to a situation of ‘unstable incapacity’ for normal aging and is determined by the decrease in response to the environment and to specific pathologies with apparent decrease of independence in activities of daily living (ADL). In this paper, we use micro-Doppler images obtained using a frequency-modulated continuous wave radar (FMCW) operating at 5.8 GHz with 400 MHz bandwidth as the sensor to perform assessment of this health status. The core idea is to develop a generalized system where the data obtained for ADL can be portable across different environments and groups of subjects, and critical events such as falls in mature individuals can be detected. In this context, we have conducted comprehensive experimental campaigns at nine different locations including four laboratory environments and five elderly care homes. A total of 99 subjects participated in the experiments where 1453 micro-Doppler signatures were recorded for six activities. Different machine learning, deep learning algorithms and transfer learning technique were used to classify the ADL. The support vector machine (SVM), K-nearest neighbor (KNN) and convolutional neural network (CNN) provided adequate classification accuracies for particular scenarios; however, the autoencoder neural network outperformed the mentioned classifiers by providing classification accuracy of ~ 88%. The proposed system for fall detection in elderly people can be deployed in care centers and is application for any indoor settings with various age group of people. For future work, we would focus on monitoring multiple older adults, concurrently in indoor settings using continuous radar sensor data stream which is limitation of the present system.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3