Hybrid bio-inspired algorithm and convolutional neural network for automatic lung tumor detection

Author:

Vijh Surbhi,Gaurav Prashant,Pandey Hari Mohan

Abstract

AbstractIn this paper, we have proposed a hybrid bio-inspired algorithm which takes the merits of whale optimization algorithm (WOA) and adaptive particle swarm optimization (APSO). The proposed algorithm is referred as the hybrid WOA_APSO algorithm. We utilize a convolutional neural network (CNN) for classification purposes. Extensive experiments are performed to evaluate the performance of the proposed model. Here, pre-processing and segmentation are performed on 120 lung CT images for obtaining the segmented tumored and non-tumored region nodule. The statistical, texture, geometrical and structural features are extracted from the processed image using different techniques. The optimized feature selection plays a crucial role in determining the accuracy of the classification algorithm. The novel variant of whale optimization algorithm and adaptive particle swarm optimization, hybrid bio-inspired WOA_APSO, is proposed for selecting optimized features. The feature selection grouping is applied by embedding linear discriminant analysis which helps in determining the reduced dimensions of subsets. Twofold performance comparisons are done. First, we compare the performance against the different classification techniques such as support vector machine, artificial neural network (ANN) and CNN. Second, the computational cost of the hybrid WOA_APSO is compared with the standard WOA and APSO algorithms. The experimental result reveals that the proposed algorithm is capable of automatic lung tumor detection and it outperforms the other state-of-the-art methods on standard quality measures such as accuracy (97.18%), sensitivity (97%) and specificity (98.66%). The results reported in this paper are encouraging; hence, these results will motivate other researchers to explore more in this direction.

Funder

Edge Hill University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3