Dual temporal gated multi-graph convolution network for taxi demand prediction

Author:

Yang Taoru,Tang Xiaopei,Liu RongORCID

Abstract

AbstractTaxi demand prediction is essential to build efficient traffic transportation systems for smart city. It helps to properly allocate vehicles, ease the traffic pressure and improve passengers’ experience. Traditional taxi demand prediction methods mostly rely on time-series forecasting techniques, which cannot model the nonlinearity embedded in data. Recent studies start to combine the Euclidean spatial features through grid-based methods. By considering the spatial correlations among different regions, we can capture how the temporal events have impacts on those with adjacent links or intersections and improve prediction precision. Some graph-based models are proposed to encode the non-Euclidean correlations as well. However, the temporal periodicity of data is often overlooked, and the study units are usually constructed as oversimplified grids. In this paper, we define places with specific semantic and humanistic experiences as study units, using a fuzzy set method based on adaptive kernel density estimation. Then, we introduce dual temporal gated multi-graph convolution network to predict the future taxi demand. Specifically, multi-graph convolution is used to model spatial correlations with graphs, including the neighborhood, functional similarities and landscape similarities based on street view images. As for the temporal dependencies modeling, we design the dual temporal gated branches to capture information hidden in both previous and periodic observations. Experiments on two real-world datasets show the effectiveness of our model over the baselines.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3