A noise injection strategy for graph autoencoder training
Author:
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-020-05283-x.pdf
Reference35 articles.
1. Wang Y, Xu B, Kwak M, Zeng X (2020) A simple training strategy for graph autoencoder. In: Proceedings of the international conference on machine learning and computing (ICMLC), pp 341–345. https://doi.org/10.1145/3383972.3383985
2. Tahmasebi H, Ravanmehr R, Mohamadrezaei R (2020) Social movie recommender system based on deep autoencoder network using Twitter data. Neural Comput Appl. https://doi.org/10.1007/s00521-020-05085-1
3. Cai H, Zheng VW, Chang KCC (2018) A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Trans Knowl Data Eng 30:1616–1637. https://doi.org/10.1109/TKDE.2018.2807452
4. Li B, Pi D (2020) Network representation learning: a systematic literature review. Neural Comput Appl. https://doi.org/10.1007/s00521-020-04908-5
5. Pan S, Hu R, Fung SF et al (2020) Learning graph embedding with adversarial training methods. IEEE Trans Cybern 50:2475–2487. https://doi.org/10.1109/TCYB.2019.2932096
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Self-gating stochastic-resonance-based autoencoder for unsupervised learning;Physical Review E;2024-07-01
2. A Hybrid Regularized Multilayer Perceptron for Input Noise Immunity;IEEE Transactions on Artificial Intelligence;2024-01
3. Balanced incremental deep reinforcement learning based on variational autoencoder data augmentation for customer credit scoring;Engineering Applications of Artificial Intelligence;2023-06
4. Similar Gesture Recognition via an Optimized Convolutional Neural Network and Adam Optimizer;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2021
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3