A two-stage short-term load forecasting approach using temperature daily profiles estimation
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
http://link.springer.com/content/pdf/10.1007/s00521-017-3324-x.pdf
Reference48 articles.
1. Ramanathan R, Engle R, Granger CW et al (1997) Short-run forecasts of electricity loads and peaks. Int J Forecast 13:161–174. https://doi.org/10.1016/S0169-2070(97)00015-0
2. Huang S-J, Shih K-R (2003) Short-term load forecasting via ARMA model identification including non-Gaussian process considerations. IEEE Trans Power Syst 18:673–679. https://doi.org/10.1109/TPWRS.2003.811010
3. Sargunaraj S, Gupta DS, Devi S (1997) Short-term load forecasting for demand side management. IEE Proc Gener Transm Distrib 144:68–74. https://doi.org/10.1049/ip-gtd:19970599
4. Zarchan P, Musoff H (2005) Fundamentals of Kalman filtering: a practical approach. American Institute of Aeronautics and Astronautics, Virginia
5. Kyriakides E, Polycarpou M (2007) Short term electric load forecasting: a tutorial. In: Trends in neural computation. Springer, Berlin, pp 391–418
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Errors in temporal disaggregation of temperature can lead to non-negligible biases in agroecosystem risk assessment;Agricultural and Forest Meteorology;2024-04
2. Novel Power Load Pattern Recognition Algorithm Based on Unbalanced Data Clustering;2023 3rd International Conference on New Energy and Power Engineering (ICNEPE);2023-11-24
3. NSDAR: A neural network-based model for similar day screening and electric load forecasting;Applied Energy;2023-11
4. Time Generative adversarial network for the generation of electricity load data;2023 International Conference on Control, Automation and Diagnosis (ICCAD);2023-05-10
5. Cluster-based industrial KPIs forecasting considering the periodicity and holiday effect using LSTM network and MSVR;Advanced Engineering Informatics;2023-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3