Suspicious transaction alert and blocking system for cryptocurrency exchanges in metaverse’s social media universes: RG-guard

Author:

Gürfidan RemziORCID

Abstract

AbstractIn this study, we propose an effective system called RG-Guard that detects potential risks and threats in the use of cryptocurrencies in the metaverse ecosystem. In order for the RG-Guard engine to detect suspicious transactions, Ethereum network transaction information and phishing wallet addresses were collected, and a unique dataset was created after the data preprocessing process. During the data preprocessing process, we manually distinguished the features within the original dataset that contained potential risk indicators. The learning process of the RG-Guard engine in risk classification was achieved by developing a deep learning model based on LSTM + Softmax. In the training process of the model, RG-Guard was optimised for maximum accuracy, and optimum hyperparameters were obtained. The reliability and dataset performance of the preferred LSTM + Softmax model were verified by comparing it with algorithms used in risk classification and detection applications in the literature (Decision tree, XG boost, Random forest and light gradient boosting machine). Accordingly, among the trained models, LSTM + Softmax has the highest accuracy with an F1-score of 0.9950. When a cryptocurrency transaction occurs, RG-Guard extracts the feature vectors of the transaction and assigns a risk level between 1 and 5 to the parameter named βrisk. Since transactions with βrisk >  = 3 are labelled as suspicious transactions, RG-Guard blocks this transaction. Thus, thanks to the use of the RG-Guard engine in metaverse applications, it is aimed to easily distinguish potential suspicious transactions from instant transactions. As a result, it is aimed to detect and prevent instant potential suspicious transactions with the RG-Guard engine in money transfers, which have the greatest risk in cryptocurrency transactions and are the target of fraud. The original dataset prepared in the proposed study and the hybrid LSTM + Softmax model developed specifically for the model are expected to contribute to the development of such studies.

Funder

Isparta University of Applied Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3