“SPOCU”: scaled polynomial constant unit activation function

Author:

Kiseľák Jozef,Lu Ying,Švihra Ján,Szépe Peter,Stehlík MilanORCID

Abstract

AbstractWe address the following problem: given a set of complex images or a large database, the numerical and computational complexity and quality of approximation for neural network may drastically differ from one activation function to another. A general novel methodology, scaled polynomial constant unit activation function “SPOCU,” is introduced and shown to work satisfactorily on a variety of problems. Moreover, we show that SPOCU can overcome already introduced activation functions with good properties, e.g., SELU and ReLU, on generic problems. In order to explain the good properties of SPOCU, we provide several theoretical and practical motivations, including tissue growth model and memristive cellular nonlinear networks. We also provide estimation strategy for SPOCU parameters and its relation to generation of random type of Sierpinski carpet, related to the [pppq] model. One of the attractive properties of SPOCU is its genuine normalization of the output of layers. We illustrate SPOCU methodology on cancer discrimination, including mammary and prostate cancer and data from Wisconsin Diagnostic Breast Cancer dataset. Moreover, we compared SPOCU with SELU and ReLU on large dataset MNIST, which justifies usefulness of SPOCU by its very good performance.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3