Multi-mmlg: a novel framework of extracting multiple main melodies from MIDI files

Author:

Zhao Jing,Taniar David,Adhinugraha Kiki,Baskaran Vishnu Monn,Wong KokSheikORCID

Abstract

AbstractAs an essential part of music, main melody is the cornerstone of music information retrieval. In the MIR’s sub-field of main melody extraction, the mainstream methods assume that the main melody is unique. However, the assumption cannot be established, especially for music with multiple main melodies such as symphony or music with many harmonies. Hence, the conventional methods ignore some main melodies in the music. To solve this problem, we propose a deep learning-based Multiple Main Melodies Generator (Multi-MMLG) framework that can automatically predict potential main melodies from a MIDI file. This framework consists of two stages: (1) main melody classification using a proposed MIDIXLNet model and (2) conditional prediction using a modified MuseBERT model. Experiment results suggest that the proposed MIDIXLNet model increases the accuracy of main melody classification from 89.62 to 97.37%. In addition, this model requires fewer parameters (71.8 million) than the previous state-of-art approaches. We also conduct ablation experiments on the Multi-MMLG framework. In the best-case scenario, predicting meaningful multiple main melodies for the music are achieved.

Funder

Monash University Malaysia

Monash University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference68 articles.

1. Tsai W-H, Yu H-M, Wang H-M, Horng J-T (2008) Using the similarity of main melodies to identify cover versions of popular songs for music document retrieval. J Inf Sci Eng 24(6):1669–1687

2. Simonetta F, Ntalampiras S, Avanzini F (2019) Multimodal music information processing and retrieval: survey and future challenges. In: International workshop on multilayer music representation and processing (MMRP). IEEE, pp 10–18

3. Ren Y, He J, Tan X, Qin T, Zhao Z, Liu T-Y (2020) Popmag: pop music accompaniment generation. In: Proceedings of the 28th ACM international conference on multimedia, pp 1198–1206

4. Wang Z, Chen K, Jiang J, Zhang Y, Xu M, Dai S, Gu X, Xia G (2020) Pop909: a pop-song dataset for music arrangement generation. arXiv preprint arXiv:2008.07142

5. He T, Liu W, Gong C, Yan J, Zhang N (2021) Music plagiarism detection via bipartite graph matching. arXiv preprint arXiv:2107.09889

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3