Extreme learning machine versus classical feedforward network

Author:

Markowska-Kaczmar UrszulaORCID,Kosturek MichałORCID

Abstract

AbstractOur research is devoted to answering whether randomisation-based learning can be fully competitive with the classical feedforward neural networks trained using backpropagation algorithm for classification and regression tasks. We chose extreme learning as an example of randomisation-based networks. The models were evaluated in reference to training time and achieved efficiency. We conducted an extensive comparison of these two methods for various tasks in two scenarios: $$\bullet$$ using comparable network capacity and $$\bullet$$ using network architectures tuned for each model. The comparison was conducted on multiple datasets from public repositories and some artificial datasets created for this research. Overall, the experiments covered more than 50 datasets. Suitable statistical tests supported the results. They confirm that for relatively small datasets, extreme learning machines (ELM) are better than networks trained by the backpropagation algorithm. But for demanding image datasets, like ImageNet, ELM is not competitive to modern networks trained by backpropagation; therefore, in order to properly address current practical needs in pattern recognition entirely, ELM needs further development. Based on our experience, we postulate to develop smart algorithms for the inverse matrix calculation, so that determining weights for challenging datasets becomes feasible and memory efficient. There is a need to create specific mechanisms to avoid keeping the whole dataset in memory to compute weights. These are the most problematic elements in ELM processing, establishing the main obstacle in the widespread ELM application.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hardware Implementation of MRO-ELM for Online Sequential Learning on FPGA;Communications in Computer and Information Science;2023-12-23

2. Deep Extreme Learning Machine With its Application to Body-Conducted-Sound-Based Handwork Recognition;2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP);2023-09-17

3. A pruning extreme learning machine with $$L_{2, 1/2}$$ regularization for multi-dimensional output problems;International Journal of Machine Learning and Cybernetics;2023-08-05

4. A Novel Regularization Paradigm for the Extreme Learning Machine;Neural Processing Letters;2023-04-10

5. Spectral library transfer between distinct laser-induced breakdown spectroscopy systems trained on simultaneous measurements;Journal of Analytical Atomic Spectrometry;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3