Addressing the data bottleneck in medical deep learning models using a human-in-the-loop machine learning approach

Author:

Mosqueira-Rey EduardoORCID,Hernández-Pereira Elena,Bobes-Bascarán José,Alonso-Ríos David,Pérez-Sánchez Alberto,Fernández-Leal Ángel,Moret-Bonillo Vicente,Vidal-Ínsua Yolanda,Vázquez-Rivera Francisca

Abstract

AbstractAny machine learning (ML) model is highly dependent on the data it uses for learning, and this is even more important in the case of deep learning models. The problem is a data bottleneck, i.e. the difficulty in obtaining an adequate number of cases and quality data. Another issue is improving the learning process, which can be done by actively introducing experts into the learning loop, in what is known as human-in-the-loop (HITL) ML. We describe an ML model based on a neural network in which HITL techniques were used to resolve the data bottleneck problem for the treatment of pancreatic cancer. We first augmented the dataset using synthetic cases created by a generative adversarial network. We then launched an active learning (AL) process involving human experts as oracles to label both new cases and cases by the network found to be suspect. This AL process was carried out simultaneously with an interactive ML process in which feedback was obtained from humans in order to develop better synthetic cases for each iteration of training. We discuss the challenges involved in including humans in the learning process, especially in relation to human–computer interaction, which is acquiring great importance in building ML models and can condition the success of a HITL approach. This paper also discusses the methodological approach adopted to address these challenges.

Funder

Agencia Estatal de Investigación

Xunta de Galicia

CITIC

Universidade da Coruña

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3