1. Abbaszadeh P (2016) Improving hydrological process modeling using optimized threshold-based wavelet de-noising technique. Water Resour Manag 30(5):1701–1721
2. Aliabadi M, Golmohammadi R, Mansoorizadeh M, Khotanlou H, Hamadani AO (2013) An empirical technique for predicting noise exposure level in the typical embroidery workrooms using artificial neural networks. Appl Acoust 74(3):364–374
3. Amodei D, Ananthanarayanan S, Anubhai R, Bai J, Battenberg E, Case C, Casper J, Catanzaro B, Cheng Q, Chen G, et al (2016) Deep speech 2: end-to-end speech recognition in English and Mandarin. In: Proceedings of international conference on machine learning (ICML), New York City, NY, USA, pp 173–182
4. Arik SO, Chrzanowski M, Coates A, Diamos G, Gibiansky A, Kang Y, Li X, Miller J, Raiman J, Sengupta S, et al (2017) Deep voice: real-time neural text-to-speech. arXiv preprint
arXiv:1702.07825
5. Brandenburg K (1999) MP3 and AAC explained. In: Audio engineering society conference: 17th international conference: high-quality audio coding. Audio Engineering Society