MOAAA/D: a decomposition-based novel algorithm and a structural design application

Author:

Altiok MustafaORCID,Gündüz Mesut

Abstract

AbstractWhen real-world engineering challenges are examined adequately, it becomes clear that multi-objective need to be optimized. Many engineering problems have been handled utilizing the decomposition-based optimization approach according to the literature. The performance of multi-objective evolutionary algorithms is highly dependent on the balance of convergence and diversity. Diversity and convergence are not appropriately balanced in the decomposition technique, as they are in many approaches, for real-world problems. A novel Multi-Objective Artificial Algae Algorithm based on Decomposition (MOAAA/D) is proposed in the paper to solve multi-objective structural problems. MOAAA/D is the first multi-objective algorithm that uses the decomposition-based method with the artificial algae algorithm. MOAAA/D, which successfully draws a graph on 24 benchmark functions within the area of two common metrics, also produced promising results in the structural design problem to which it was applied. To facilitate the design of the "rectangular reinforced concrete column" using MOAAA/D, a solution space was derived by optimizing the rebar ratio and the concrete quantity to be employed.

Funder

Tokat Gaziosmanpasa University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3