Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
http://link.springer.com/content/pdf/10.1007/s00521-019-04267-w.pdf
Reference52 articles.
1. Sfikas IP, Badogiannis EG, Trezos KG (2014) Rheology and mechanical characteristics of self-compacting concrete mixtures containing metakaolin. Constr Build Mater 64:121–129. https://doi.org/10.1016/j.conbuildmat.2014.04.048
2. Beycioglu A, Yilmaz Aruntas H (2014) Workability and mechanical properties of self-compacting concretes containing LLFA, GBFS and MC. Constr Build Mater 73:626–635. https://doi.org/10.1016/j.conbuildmat.2014.09.071
3. Yoo S-W, Ryu G-S, Choo JF (2015) Evaluation of the effects of high-volume fly ash on the flexural behavior of reinforced concrete beams. Constr Build Mater 93:1132–1144. https://doi.org/10.1016/j.conbuildmat.2015.05.021
4. Acharya PK, Patro SK (2015) Effect of lime and ferrochrome ash (FA) as partial replacement of cement on strength, ultrasonic pulse velocity and permeability of concrete. Constr Build Mater 94:448–457. https://doi.org/10.1016/j.conbuildmat.2015.07.081
5. Jalal M, Pouladkhan A, Fasihi O, Jafari D (2015) Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete. Constr Build Mater 94:90–104
Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A generalized explainable approach to predict the hardened properties of self-compacting geopolymer concrete using machine learning techniques;COMPUT CONCRETE;2024
2. Prediction of compressive strength of glass powder concrete based on artificial intelligence;Journal of Building Engineering;2024-08
3. Development of hybrid gradient boosting models for predicting the compressive strength of high-volume fly ash self-compacting concrete with silica fume;Structures;2024-08
4. Prediction of compressive strength of high-volume fly ash self-compacting concrete with silica fume using machine learning techniques;Construction and Building Materials;2024-08
5. Predicting 28-day compressive strength of fibre-reinforced self-compacting concrete (FR-SCC) using MEP and GEP;Scientific Reports;2024-07-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3