Clustering-based adaptive data augmentation for class-imbalance in machine learning (CADA): additive manufacturing use case

Author:

Dasari Siva KrishnaORCID,Cheddad Abbas,Palmquist Jonatan,Lundberg Lars

Abstract

AbstractLarge amount of data are generated from in-situ monitoring of additive manufacturing (AM) processes which is later used in prediction modelling for defect classification to speed up quality inspection of products. A high volume of this process data is defect-free (majority class) and a lower volume of this data has defects (minority class) which result in the class-imbalance issue. Using imbalanced datasets, classifiers often provide sub-optimal classification results, i.e. better performance on the majority class than the minority class. However, it is important for process engineers that models classify defects more accurately than the class with no defects since this is crucial for quality inspection. Hence, we address the class-imbalance issue in manufacturing process data to support in-situ quality control of additive manufactured components. For this, we propose cluster-based adaptive data augmentation (CADA) for oversampling to address the class-imbalance problem. Quantitative experiments are conducted to evaluate the performance of the proposed method and to compare with other selected oversampling methods using AM datasets from an aerospace industry and a publicly available casting manufacturing dataset. The results show that CADA outperformed random oversampling and the SMOTE method and is similar to random data augmentation and cluster-based oversampling. Furthermore, the results of the statistical significance test show that there is a significant difference between the studied methods. As such, the CADA method can be considered as an alternative method for oversampling to improve the performance of models on the minority class.

Funder

Blekinge Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3