Reading order detection on handwritten documents

Author:

Quirós LorenzoORCID,Vidal Enrique

Abstract

AbstractRecent advances in Handwritten Text Recognition and Document Layout Analysis have made it possible to convert digital images of manuscripts into electronic text. However, providing this text with the correct structure and context is still an open problem that needs to be solved to actually enable extracting the relevant information conveyed by the text. The most important structure needed for a set of text elements is their reading order. Most of the studies on the reading order problem are rule-based approaches and focus on printed documents. Much less attention has been paid so far to handwritten text documents, where the problem becomes particularly important—and challenging. In this work, we propose a new approach to automatically determine the reading order of text regions and lines in handwritten text documents. The task is approached as a sorting problem where the order-relation operator is automatically learned from examples. We experimentally demonstrate the effectiveness of our method on three different datasets at different hierarchical levels.

Funder

Universitat Politècnica de València

Ministerio de Ciencia, Innovación y Universidades

Fundación BBVA

Agencia Estatal de Investigación

Universidad Politècnica de València

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference23 articles.

1. Ares Oliveira S, Seguin B, Kaplan F (2018) dhSegment: A generic deep-learning approach for document segmentation. CoRR abs/1804.10371

2. Bluche T (2015) Deep neural networks for large vocabulary handwritten text recognition. Ph.D. thesis, Ecole Doctorale Informatique de Paris-Sud - Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur . Discipline : informatique

3. Breuel TM (2003) High performance document layout analysis. In: 2003 Symposium on document image understanding (SDIUT’03)

4. Coquenet D, Soullard Y, Chatelain C, Paquet T (2019) Have convolutions already made recurrence obsolete for unconstrained handwritten text recognition? In: 2019 International conference on document analysis and recognition workshops (ICDARW), pp. 65–70. IEEE, Sydney, Australia

5. Davey BA, Priestley HA (1990) Introduction to lattices and order. Cambridge University Press, Cambridge

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3