Deep autoencoder for false positive reduction in handgun detection

Author:

Vallez NoeliaORCID,Velasco-Mata Alberto,Deniz Oscar

Abstract

AbstractIn an object detection system, the main objective during training is to maintain the detection and false positive rates under acceptable levels when the model is run over the test set. However, this typically translates into an unacceptable rate of false alarms when the system is deployed in a real surveillance scenario. To deal with this situation, which often leads to system shutdown, we propose to add a filter step to discard part of the new false positive detections that are typical of the new scenario. This step consists of a deep autoencoder trained with the false alarm detections generated after running the detector over a period of time in the new scenario. Therefore, this step will be in charge of determining whether the detection is a typical false alarm of that scenario or whether it is something anomalous for the autoencoder and, therefore, a true detection. In order to decide whether a detection must be filtered, three different approaches have been tested. The first one uses the autoencoder reconstruction error measured with the mean squared error to make the decision. The other two use the k-NN (k-nearest neighbors) and one-class SVMs (support vector machines) classifiers trained with the autoencoder vector representation. In addition, a synthetic scenario has been generated with Unreal Engine 4 to test the proposed methods in addition to a dataset with real images. The results obtained show a reduction in the number of false positives between 22.5% and 87.2% and an increase in the system’s precision of 1.2%$$-47$$ - 47 % when the autoencoder is applied.

Funder

Ministerio de Economía y Competitividad

Junta de Comunidades de Castilla-La Mancha

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3