Quran reciter identification using NASNetLarge

Author:

Saber Hebat-AllahORCID,Younes Ahmed,Osman Mohamed,Elkabani Islam

Abstract

AbstractSpeaker identification has significant advantages for the field of human–computer interaction. Recently, many scholars have made contributions in this field and successfully created deep learning models for automatic speaker identification systems. However, most of the speech signal processing work is limited to English-only applications, despite numerous challenges with Arabic speech, particularly with the recitation of the Holy Quran, which is the Islamic holy book. In the light of these considerations, this study proposes a model for identifying the reciter of the Holy Quran using a dataset of 11,000 audio samples extracted from 20 Quran reciters. To enable feeding the audio samples' visual representation to the pre-trained models, the audio samples are converted from their original audio representation to visual representation using the Mel-Frequency Cepstrum Coefficients. Six pre-trained deep learning models are evaluated separately in the proposed model. The results from the test dataset reveal that the NASNetLarge model achieved the highest accuracy rate of 98.50% among the pre-trained models used in this study.

Funder

Damanhour University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3