Deep reinforcement learning of passenger behavior in multimodal journey planning with proportional fairness

Author:

Chu Kai-FungORCID,Guo Weisi

Abstract

AbstractMultimodal transportation systems require an effective journey planner to allocate multiple passengers to transport operators. One example is mobility-as-a-service, a new mobility service that integrates various transport modes through a single platform. In such a multimodal and diverse journey planning problem, accommodating heterogeneous passengers with different and dynamic preferences can be challenging. Furthermore, passengers may behave based on experiences and expectations, in the sense that the transport experience affects their state and decision of the next transport service. Current methods of treating each journey planning optimization as a non-time varying single experience problem cannot adequately model passenger experience and memories over many journeys over time. In this paper, we model passenger experience as a Markov model where prior experiences have a transient effect on future long-term satisfaction and retention rate. As such, we formulate a multi-objective journey planning problem that considers individual passenger preferences, experiences, and memories. The proposed approach dynamically determines utility weights to obtain an optimal journey plan for individual passengers based on their status. To balance the profit received by each transport operator, we present a variant-based proportional fairness. Our experiments using real-world and synthetic datasets show that our approach enhances passenger satisfaction, compared to baseline methods. We demonstrate that the overall profit is increased by 2.3 times, resulting in a higher retention rate caused by higher satisfaction levels. Our proposed approach can facilitate the participation of transport operators and promote passenger acceptance of MaaS.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid approach based on magnitude-based fuzzy analytic hierarchy process for estimating sustainable urban transport solutions;Engineering Applications of Artificial Intelligence;2024-11

2. Privacy-Preserving Federated Deep Reinforcement Learning for Mobility-as-a-Service;IEEE Transactions on Intelligent Transportation Systems;2024-02

3. A Survey of Artificial Intelligence-Related Cybersecurity Risks and Countermeasures in Mobility-as-a-Service;IEEE Intelligent Transportation Systems Magazine;2024

4. Spatial–Temporal Upfront Pricing Under a Mixed Pooling and Non-Pooling Market With Reinforcement Learning;IEEE Transactions on Intelligent Transportation Systems;2024

5. Passenger Spoofing Attack for Artificial Intelligence-based Mobility-as-a-Service;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3