A novel deep ordinal classification approach for aesthetic quality control classification

Author:

Rosati RiccardoORCID,Romeo Luca,Vargas Víctor Manuel,Gutiérrez Pedro Antonio,Hervás-Martínez César,Frontoni Emanuele

Abstract

AbstractNowadays, decision support systems (DSSs) are widely used in several application domains, from industrial to healthcare and medicine fields. Concerning the industrial scenario, we propose a DSS oriented to the aesthetic quality control (AQC) task, which has quickly established itself as one of the most crucial challenges of Industry 4.0. Taking into account the increasing amount of data in this domain, the application of machine learning (ML) and deep learning (DL) techniques offers great opportunities to automatize the overall AQC process. State-of-the-art is mainly oriented to approach this problem with a nominal DL classification method which does not exploit the ordinal structure of the AQC task, thus not penalizing the error among distant AQC classes (which is a relevant aspect for the real use case). The paper introduces a DL ordinal methodology for the AQC classification. Differently from other deep ordinal methods, we combined the standard categorical cross-entropy with the cumulative link model and we imposed the ordinal constraint via the thresholds and slope parameters. Experimental results were performed for solving an AQC task on a novel image dataset originated from a specific company’s demand (i.e., aesthetic assessment of wooden stocks). We demonstrated how the proposed methodology is able to reduce misclassification errors (up to 0.937 quadratic weight kappa loss) among distant classes while overcoming other state-of-the-art deep ordinal models and reducing the bias factor related to the item geometry. The proposed DL approach was integrated as the main core of a DSS supported by Internet of Things (IoT) architecture that can support the human operator by reducing up to 90% the time needed for the qualitative analysis carried out manually in this specific domain.

Funder

Regione Marche

Agencia Española de Investigaciòn

Consejeria de Salud y Familia

Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3