Abstract
AbstractIn the last decade, the demand for readily accessible corpora has touched all areas of natural language processing, including coreference resolution. However, it is one of the least considered sub-fields in recent developments. Moreover, almost all existing resources are only available for the English language. To overcome this lack, this work proposes a methodology to create a corpus for coreference resolution in Italian exploiting knowledge of annotated resources in other languages. Starting from OntonNotes, the methodology translates and refines English utterances to obtain utterances respecting Italian grammar, dealing with language-specific phenomena and preserving coreference and mentions. A quantitative and qualitative evaluation is performed to assess the well-formedness of generated utterances, considering readability, grammaticality, and acceptability indexes. The results have confirmed the effectiveness of the methodology in generating a good dataset for coreference resolution starting from an existing one. The goodness of the dataset is also assessed by training a coreference resolution model based on BERT language model, achieving the promising results. Even if the methodology has been tailored for English and Italian languages, it has a general basis easily extendable to other languages, adapting a small number of language-dependent rules to generalize most of the linguistic phenomena of the language under examination.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献