Performance analysis and improvement of machine learning algorithms for automatic modulation recognition over Rayleigh fading channels
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
http://link.springer.com/article/10.1007/s00521-017-3040-6/fulltext.html
Reference25 articles.
1. Azzouz EE, Nandi AK (1995) Automatic identification of digital modulation rypes. Signal Process 47:55–69
2. Wong MLD, Nandi AK (2004) Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Process 84:351–365
3. Valipour MH, Homayounpour MM, Mehralian MA (2012) Automatic digital modulation recognition in presence of noise using SVM and PSO. In: IEEE international symposium on telecommunications, pp 378–382
4. Roganovic MM, Neskovic AM, Neskovic NJ (2009) Application of artificial neural networks in classification of digital modulations for software defined radio. In: IEEE, EUROCON, pp 1700–1706
5. Ozen A, Ozturk C (2013) A novel modulation recognition technique based on artificial bee colony algorithm in the presence of multipath fading channels. In: 36th international conference on telecommunications and signal processing (TSP), pp 239–243
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A graph-based semi-supervised approach for few-shot class-incremental modulation classification;China Communications;2024
2. Toward Next-Generation Signal Intelligence: A Hybrid Knowledge and Data-Driven Deep Learning Framework for Radio Signal Classification;IEEE Transactions on Cognitive Communications and Networking;2023-06
3. Research on non-smooth signal identification algorithm for electronic communication in a two-way relay network;Applied Mathematics and Nonlinear Sciences;2023-05-22
4. Modulation Signal Recognition of Underwater Acoustic Communication Based on Archimedes Optimization Algorithm and Random Forest;Sensors;2023-03-02
5. EMD and VMD Empowered Deep Learning for Radio Modulation Recognition;IEEE Transactions on Cognitive Communications and Networking;2023-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3