Characterization of local and global capacity criteria for collapse assessment of code-conforming RC buildings

Author:

D’Angela DaniloORCID,Magliulo GennaroORCID,Celano FrancescaORCID,Cosenza EdoardoORCID

Abstract

AbstractThe paper investigates both local and global capacity criteria for collapse assessment of RC frame buildings. Both literature and regulations criteria are considered, also including the formulation recommended in the draft of the new Eurocode 8 (part 3) and other collapse criteria never investigated. The case studies consist of low-rise bare and infilled frame buildings, which are designed according to the Italian code provisions considering low-to-high seismicity sites in Italy. The seismic demand is estimated by performing multiple-stripe analysis based on inelastic modeling, also including the presence of the infills. The capacity assessment and the performance evaluation associated with the (building) collapse are carried out according to the latest approaches and methodologies of performance-based earthquake engineering. The investigated capacity criteria are characterized as a result of the collapse assessment in terms of (a) collapse demand to capacity ratios, (b) collapse fragility curves, (c) collapse margin ratios and probabilities, and (d) inter-capacity margin ratios. The findings provide novel information and technical insights into the influence of the collapse capacity criteria selection on the collapse features of the investigated buildings. In particular, the capacity criteria are quantitatively correlated to the building collapse performance, also outlining safety and economic considerations.

Funder

Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering

Reference92 articles.

1. American Society of Civil Engineers (2017a) Seismic evaluation and retrofit of existing buildings, 41st edn. American Society of Civil Engineers, Reston, VA

2. American Society of Civil Engineers (ed) (2017b) ASCE 7–16. Minimum design loads for buildings and other structures. American Society of Civil Engineers: Structural Engineering Institute, Reston, VA

3. Ansal A (2014) Perspectives on European earthquake engineering and seismology, vol 1. Springer, Berlin

4. Baker JW (2015) Efficient analytical fragility function fitting using dynamic structural analysis. Earthq Spectra 31:579–599. https://doi.org/10.1193/021113EQS025M

5. Baradaran Shoraka M, Yang TY, Elwood KJ (2013) Seismic loss estimation of non-ductile reinforced concrete buildings. Earthq Eng Struct Dyn 42:297–310. https://doi.org/10.1002/eqe.2213

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3