Ultimate in-plane shear behaviour of clay brick masonry elements strengthened with TRM overlays

Author:

Elghazouli A. Y.ORCID,Bompa D. V.,Mourad S. A.,Elyamani A.

Abstract

AbstractThis paper studies the response of unreinforced masonry (URM) members made of hydraulic lime mortar and fired clay bricks, commonly found in heritage structures, strengthened with textile reinforced mortar (TRM) overlays. The investigation includes URM and TRM-strengthened diagonal compression tests on square panels, and relatively large-scale wall specimens subjected to combined gravity and lateral cyclic loads. Complementary compression, tension, and interface material tests are also carried out. The diagonal panel tests show that the TRM effectiveness depends in a non-proportional manner on the overlays, render thickness, and substrate strength. The enhancement in stiffness, strength, and ultimate shear strain, using one to four mesh layers on each side, is shown to vary in the range of 49–132%, 102–536%, and 300–556% respectively. It is shown that strut crushing typically governs the response of such low-strength URM masonry elements confined by TRM overlays. The cyclic tests on the comparatively larger walls show that the TRM is effective, shifting the response from URM diagonal tension to rocking, and enhancing the stiffness, strength, and ultimate drift capacity by more than 160%, 30%, and 130%, respectively. It is shown that analytical assessment methods for predicting the response of TRM-strengthened and URM members in terms of stiffness, strength and load-deformation can be reliably adapted. The cumulative contribution of the URM and TRM components, in conjunction with a suitable fibre textile strain, is also found to offer an improved prediction of the shear strength compared to codified procedures. The findings enable the evaluation and improvement of analytical models for determining the main inelastic response parameters of TRM-strengthened masonry and provide information for validating future detailed nonlinear numerical simulations.

Funder

Arts and Humanities Research Council

Publisher

Springer Science and Business Media LLC

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering

Reference78 articles.

1. ACI (American Concrete Institute) (2013) ACI 549.4R6R-13. Guide to design and construction of externally bonded fabric-reinforced cementitious matrix (FRCM) and steel-reinforced grout (SRG) systems for repair and strengthening masonry structures. American Concrete Institute. Farmington Hills, MI

2. ACI (American Concrete Institute) (2013) ACI 549.6R-20. Guide to design and construction of externally bonded fabric-reinforced cementitious matrix (FRCM) and steel-reinforced grout (SRG) systems for repair and strengthening masonry structures. American Concrete Institute. Farmington Hills, MI

3. Almeida JAPP, Pereira EB, Barros JAO (2015) Assessment of overlay masonry strengthening system under in-plane monotonic and cyclic loading using the diagonal tensile test. Constr Build Mater 94:851–865. https://doi.org/10.1016/j.conbuildmat.2015.07.040

4. ASCE (American Society of Civil Engineers) (2017) ASCE/SEI 41-17 seismic evaluation and retrofit of existing buildings. ASCE (American Society of Civil Engineers). Reston, VA

5. ASTM E519-07 (2017) Standard test method for diagonal tension (shear) in masonry assemblages. ASTM International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3