The heuristic vulnerability model: fragility curves for masonry buildings

Author:

Lagomarsino Sergio,Cattari Serena,Ottonelli Daria

Abstract

AbstractIn the framework of seismic risk analyses at large scale, among the available methods for the vulnerability assessment the empirical and expert elicitation based ones still represent one of most widely used options. In fact, despite some drawbacks, they benefit of a direct correlation to the actual seismic behaviour of buildings and they are easy to handle also on huge stocks of buildings. Within this context, the paper illustrates a macroseismic vulnerability model for unreinforced masonry existing buildings that starts from the original proposal of Lagomarsino and Giovinazzi (Bull Earthquake Eng 4(4):445–463, 2006) and has further developed in recent years. The method may be classified as heuristic, in the sense that: (a) it is based on the expertise that is implicit in the European Macroseismic Scale (EMS98), with fuzzy assumptions on the binomial damage distribution; (b) it is calibrated on the observed damage in Italy, available in the database Da.D.O. developed by the Italian Department of Civil Protection (DPC). This approach guarantees a fairly well fitting with actual damage but, at the same time, ensures physically consistent results for both low and high values of the seismic intensity (for which observed data are incomplete or lacking). Moreover, the method provides a coherent distribution between the different damage levels. The valuable data in Da.D.O. allowed significant improvements of the method than its original version. The model has been recently applied in the context of ReLUIS project, funded by the DPC to support the development of Italian Risk Maps. To this aim, the vulnerability model has been applied for deriving fragility curves. This step requires to introduce a correlation law between the Macroseismic Intensity (adopted for the calibration of the model from a wide set of real damage data) and the Peak Ground Acceleration (at present, one of most used instrumental intensity measures); this conversion further increases the potential of the macroseismic method. As presented in the paper, the first applications of the model have produced plausible and consistent results at national scale, both in terms of damage scenarios and total risk (economic loss, consequences to people).

Funder

Università degli Studi di Genova

Publisher

Springer Science and Business Media LLC

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering

Reference49 articles.

1. ASCE/SEI 41-13 (2014) Seismic evaluation and retrofit of existing buildings. American Society of Civil Engineers, Reston, VA, ISBN 978-0-7844-7791-5

2. Baggio C, Bernardini A, Colozza R, Corazza L, Della Bella M, Di Pasquale G, Dolce M, Goretti A, Martinelli A, Orsini G, Papa F, Zuccaro G (2002) Manuale per la compilazione della scheda di 1° livello di rilevamento del danno, pronto intervento e agibilità per edifici ordinari nell’emergenza post-sismica (AeDES). Department of Civil Protection, Rome (in Italian)

3. Bernardini A, Lagomarsino S, Mannella A, Martinelli A, Milano L, Parodi S (2011) Forecasting seismic damage scenarios of residential buildings from rough inventories: a case-study in the Abruzzo Region (Italy). Proc IMech E Part OJ Risk Reliab 224:279–296

4. Bertelli S, Rossetto T, Ioannou I (2018) Derivation of empirical fragility functions from the 2009 Aquila earthquake. In: Proceedings of the 16th European conference on earthquake engineering, Thessaloniki, pp 1–12

5. Borzi B, Crowley H, Pinho R (2008) Simplified pushover-based earthquake loss assessment (SP-BELA) method for masonry buildings. Int J Archit Herit 2(4):353–376

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3