Analytical design models for geotechnical seismic isolation systems

Author:

Tsang Hing-HoORCID

Abstract

AbstractGeotechnical Seismic Isolation (GSI) can be defined as a new category of seismic isolation techniques that involve the dynamic interaction between the structural system and geo-materials. Whilst the mechanism of various GSI systems and their performance have already been demonstrated through different research methods, there is a missing link between fundamental research and engineering practice. This paper aims to initiate the development in this direction. A new suite of equivalent-linear foundation stiffness and damping models under the same framework is proposed for four GSI configurations, one of which is a novel combination of two existing ones. The exact solutions for the equivalent dynamic properties of flexible-base systems have also been derived that explicitly include the foundation inertia and the strain-dependent equivalent damping of foundation materials, which are both significant for GSI systems. The application of the proposed analytical design models has been illustrated through response history analyses and a detailed hand-calculation design procedure has also been outlined and demonstrated.

Funder

Swinburne University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering

Reference56 articles.

1. Abdullah A, Hazarika H (2016) Improvement of shallow foundation using non-liquefiable recycle materials. Jpn Geotech Soc Spec Publ 2(54):1863–1867

2. Alzawi A, El Naggar MH (2011) Full scale experimental study on vibration scattering using open and in-filled (GeoFoam) wave barriers. Soil Dyn Earthq Eng 31:306–317

3. Anastasiadis A, Senetakis K, Pitilakis K (2012) Small-strain shear modulus and damping ratio of sand/rubber and gravel/rubber mixtures. Geotech Geol Eng 30(2):363–382

4. Anbazhagan P, Manohar DR, Divyesh R (2015) Low cost damping scheme for low to medium rise buildings using rubber soil mixtures. Jpn Geotech Soc Spec Publ 3(2):24–28

5. ASCE Standard: ASCE/SEI 7-22 (2022) Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Structural Engineering Institute (SEI), the American Society of Civil Engineers (ASCE), Reston, Virginia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3